FPGA-based Accelerators of Deep Learning Networks for Learning and Classification: A Review

Due to recent advances in digital technologies, and the availability of credible data, an area of artificial intelligence, deep learning, has emerged and has demonstrated its ability and effectiveness in solving complex learning problems not possible before. In particular, convolutional neural networks (CNNs) have demonstrated their effectiveness in image detection and recognition applications. However, they require intensive CPU operations and memory bandwidth that make general CPUs fail to achieve the desired performance levels. Consequently, hardware accelerators that use application-specific integrated circuits, field-programmable gate arrays (FPGAs), and graphic processing units have been employed to improve the throughput of CNNs. More precisely, FPGAs have been recently adopted for accelerating the implementation of deep learning networks due to their ability to maximize parallelism and their energy efficiency. In this paper, we review the recent existing techniques for accelerating deep learning networks on FPGAs. We highlight the key features employed by the various techniques for improving acceleration performance. In addition, we provide recommendations for enhancing the utilization of FPGAs for CNNs acceleration. The techniques investigated in this paper represent the recent trends in the FPGA-based accelerators of deep learning networks. Thus, this paper is expected to direct future advances on efficient hardware accelerators and be useful for deep learning researchers.

DOI: 10.1109/ACCESS.2018.2890150

I BUILT MY SITE FOR FREE USING